IRON ORE

Hematite, Magnetite & Taconite


Iron Ore: About 98% of iron ore is used to make steel - one of the greatest inventions and most useful materials ever created. While the other uses for iron ore and iron are only a very small amount of the consumption, they provide excellent examples of the ingenuity and the multitude of uses that man can create from our natural resources. Powdered iron: used in metallurgy products, magnets, high-frequency cores, auto parts, catalyst. Radioactive iron (iron 59): in medicine, tracer element in biochemical and metallurgical research. Iron blue: in paints, printing inks, plastics, cosmetics (eye shadow), artist colors, laundry blue, paper dyeing, fertilizer ingredient, baked enamel finishes for autos and appliances, industrial finishes. Black iron oxide: as pigment, in polishing compounds, metallurgy, medicine, magnetic inks, in ferrites for electronics industry. Major producers of iron ore include Australia, Brazil, China, Russia, and India.

Magnetite -------------- Hematite

Goethite------------------ Limonite

Background
Iron (Fe) is a metallic element and composes about 5% of the Earth’s crust. When pure it is a dark, silvery-gray metal. It is a very reactive element and oxidizes (rusts) very easily. The reds, oranges and yellows seen in some soils and on rocks are probably iron oxides. The inner core of the Earth is believed to be a solid iron-nickel alloy. Iron-nickel meteorites are believed to represent the earliest material formed at the beginning of the universe. Studies show that there is considerable iron in the stars and terrestrial planets: Mars, the "Red Planet," is red due to the iron oxides in its crust.

Iron is one of the three naturally magnetic elements; the others are cobalt and nickel. Iron is the most magnetic of the three. The mineral magnetite (Fe3O4) is a naturally occurring metallic mineral that is occasionally found in sufficient quantities to be an ore of iron.
The principle ores of iron are Hematite, (70% iron) and Magnetite, (72 % iron). Taconite is a low-grade iron ore, containing up to 30% Magnetite and Hematite.
Hematite is iron oxide (Fe2O3). The amount of hematite needed in any deposit to make it profitable to mine must be in the tens of millions of tons. Hematite deposits are mostly sedimentary in origin, such as the banded iron formations (BIFs). BIFs consist of alternating layers of chert (a variety of the mineral quartz), hematite and magnetite. They are found throughout the world and are the most important iron ore in the world today. Their formation is not fully understood, though it is known that they formed by the chemical precipitation of iron from shallow seas about 1.8-1.6 billion years ago, during the Proterozoic Eon.
Taconite is a silica-rich iron ore that is considered to be a low-grade deposit. However, the iron-rich components of such deposits can be processed to produce a concentrate that is about 65% iron, which means that some of the most important iron ore deposits around the world were derived from taconite. Taconite is mined in the United States, Canada, and China.
Iron is essential to animal life and necessary for the health of plants. The human body is 0.006% iron, the majority of which is in the blood. Blood cells rich in iron carry oxygen from the lungs to all parts of the body. Lack of iron also lowers a person’s resistance to infection.

Name
The name iron is from an Old English word isaern which itself can be traced back to a Celtic word, isarnon. In time, the "s" was dropped from usage.

Sources
It is estimated that worldwide there are 800 billion tons of iron ore resources, containing more than 230 billion tons of iron. It is estimated that the United States has 110 billion tons of iron ore representing 27 billion tons of iron. Among the largest iron ore producing nations are Russia, Brazil, China, Australia, India and the USA. In the United States, great deposits are found in the Lake Superior region. Worldwide, 50 countries produce iron ore, but 96% of this ore is produced by only 15 of those countries.
Iron ore is the raw material used to make pig iron, which is one of the main raw materials to make steel. Due to the lower cost of foreign-made steel and steel products, the steel industry in the United States has had difficult economic times in recent years as more and more steel is imported. Canada provides about half of the U.S. imports, Brazil about 30%, and lesser amounts from Venezuela and Australia. 99% of steel exported from the USA was sent to Canada.

Uses
In the United States, almost all of the iron ore that is mined is used for making steel. The same is true throughout the world. Raw iron by itself is not as strong and hard as needed for construction and other purposes. So, the raw iron is alloyed with a variety of elements (such as tungsten, manganese, nickel, vanadium, chromium) to strengthen and harden it, making useful steel for construction, automobiles, and other forms of transportation such as trucks, trains and train tracks.

While the other uses for iron ore and iron are only a very small amount of the consumption, they provide excellent examples of the ingenuity and the multitude of uses that man can create from our natural resources.

Powdered iron: used in metallurgy products, magnets, high-frequency cores, auto parts, catalyst. Radioactive iron (iron 59): in medicine, tracer element in biochemical and metallurgical research. Iron blue: in paints, printing inks, plastics, cosmetics (eye shadow), artist colors, laundry blue, paper dyeing, fertilizer ingredient, baked enamel finishes for autos and appliances, industrial finishes. Black iron oxide: as pigment, in polishing compounds, metallurgy, medicine, magnetic inks, in ferrites for electronics industry.

Substitutes and Alternative Sources
Though there is no substitute for iron, iron ores are not the only materials from which iron and steel products are made. Very little scrap iron is recycled, but large quantities of scrap steel are recycled. Steel's overall recycling rate of more than 67% is far higher than that of any other recycled material, capturing more than 1-1/4 times as much tonnage as all other materials combined.

Some steel is produced from the recycling of scrap iron, though the total amount is considered to be insignificant now. If the economy of steel production and consumption changes, it may become more cost-effective to recycle iron than to produce new from raw ore.
Iron and steel face continual competition with lighter materials in the motor vehicle industry; from aluminum, concrete, and wood in construction uses; and from aluminum, glass, paper, and plastics for containers.

Gold Freeport History


In 1936 Dutch geologist Jean-Jacquez Dozy visited Indonesia to scale Jayawijaya Mountain glacier in the Irian Jaya province in western Papua. While there, he made notes of a peculiar black rock with greenishcoloring, and spent several weeks estimating the extent of the gold and copper deposits. In 1939, he filed a report about the Ertsberg (Dutch for "ore mountain"). He was working for Nederlandsche Nieuw Guinea Petroleum Maatschappij (NNGPM), an exploration company formed by Shell in 1935, with 40% Standard Vacuum Oil (Mobil) interest and 20% Far Pacific investments (Chevron subsidiary).

In March 1959 the New York Times published an article's revealing the Dutch were searching for the mountain source of alluvial gold which had been flowing into the Arafura Sea. Geologist Forbes Wilson, working for the Freeport mining company in August 1959 after reading Dozy's 1936 report, immediately prepared to explore the Ertsberg site. In 1960 the expedition, led by Forbes Wilson and Del Flint, confirmed the huge copper deposits at the Ertsberg. It was financed by Freeport Sulphur. At the time the company was implicated in a nickel stockpiling scandal under investigation in the US Senate by John F. Kennedy.[citation needed]. Its directors included Godfrey Rockefeller, Texaco chairman Augustus Long, and Robert Lovett.

With permission from the Indonesian government (though West Papua was not part of the Republic of Indonesia at the time), Freeport built the Ertsberg mine at 4,500 metres (14,000 ft) above sea level. It officially opened in 1973 (although the first ore shipment was in December 1972), and was expanded by Ertsberg East, which opened in 1981.

Steep aerial tramways are used to transport equipment and people. Ore is dropped 600 metres (2,000 ft) from the mine, concentrated and mixed with water to form a 60:40 slurry. The slurry is then pumped through pipelines to the port at Amamapare, dried and shipped. Each tonne of dry concentrate contains 317 kilograms of copper, 30 grams of gold and 30 grams of silver.

In 1977 the rebel group Free Papua Movement attacked the mine. The group dynamited the main slurry pipe, which caused tens of millions of dollars in damage, and attacked the mine facilities. The Indonesian military reacted harshly, killing at least 800 people [2].

By the mid-1980s, the original mine had been largely depleted. Freeport explored for other deposits in the area. In 1988, Freeport identified reserves valued at $40 billion at Grasberg (Dutch, "Grass Mountain", just three kilometres (two miles) from the Ertsberg mine. The winding road to Grasberg, the H.E.A.T. (Heavy Equipment Access Trail), was estimated to require $12 million to $15 million to be built. An Indonesian road-builder who had contributed to the Ertsberg road took a bulldozer and drove it downhill sketching the path. The road cost just $2 million when completed.

The 2003-2006 boom in copper prices increased the profitability of the mine. The extra consumption of copper for Asian electrical infrastructure overwhelmed copper supply and caused prices to increase from around $1500/ton to $8100/ton ($0.70/lb to $4.00/lb).

Source : en.Wikipedia.org

High-sulphidation deposits result from fluids (dominantly gases such as SO2, HF, HCl) channeled directly from a hot magma. The fluids interact with groundwater and form strong acids. These acids rot and dissolve the surrounding rock leaving only silica behind, often in a sponge-like formation known as vuggy silica. Gold and sometimes copper-rich brines that also ascend from the magma then precipitate their metals within the spongy vuggy silica bodies. The shape of these mineral deposits is generally determined by the distribution of vuggy silica. Sometimes the vuggy silica can be widespread if the acid fluids encountered a broad permeable geologic unit. In this case it is common to find large bulk-tonnage mines with lower grades.
The acidic fluids are progressively neutralized by the rock the further they move away from the fault. The rocks in turn are altered by the fluids into progressively more neutral-stable minerals the further away from the fault. As a result, definable zones of alteration minerals are almost always are formed in shell-like layers around the fault zone. Typically the sequence is to move from vuggy silica (the centre of the fault) progressing through quartz-alunite to kaolinite-dickite, illite rich rock, to chlorite rich rock at the outer reaches of alteration. Alunite (a sulphate mineral) and kalonite, dickite, illite and chlorite (clay minerals) are generally whitish to yellowish in colour. The clay and sulphate alteration (referred to as acid-sulphate alteration) in high-sulphidation systems can leave huge areas, sometimes up to 100 square kilometers of visually impressive coloured rocks.

ALTERATION IN A HIGH-SULPHIDATION SYSTEM:



In contrast, low-sulphidation veins are formed when the fluids interact with greater amounts of groundwater as they rise from the hot magma. The protracted boiling of the fluids in low-sulphidation systems produces high grade gold (greater than one ounce gold per ton) and silver deposits. The fluids interact with the surrounding rock for a much longer period of time than the quickly channeled high-sulphidation fluids. As a result, the fluids become dilute and

neutralized and the silica dissolves. The silica is later precipitated in the veins as quartz, often sealing the fissure closed. When this occurs, the pressure of the gases underneath the sealed fault builds until the seal is ruptured, which provokes catastrophic boiling and the precipitation of gold. After this explosive boiling event, passive conditions return, and quartz precipitates once again. This cyclical process results in the well-known banded texture of the quartz-adularia veins typical of low-sulphidation vein systems. Quartz-adularia veins can contain high-grade gold (greater than one ounce gold per ton) and silver deposits, over vertical intervals of generally 300 to 600 metres. Within this vertical dimension, high gold grades can make for a large amount of easy to mine gold in a narrow compact area.

ALTERATION IN A HIGH-SULPHIDATION SYSTEM:



The association of gold mineralization with volcanic and geothermal hot spring activity has long been recognized by prospectors and geologists. We now know that this association is a consequence of the hot magmas which not only produce volcanic eruptions and volcanic rocks but also are the source of the hot fluids that transport gold and other metals and may in fact be the source of gold itself. Fluids emanating from a molten magma are extremely hot and under high pressure deep below the surface. As these fluids rise, they mix with surface waters and change the composition of the rocks with which they come into contact. This process is known as alteration. Eventually the fluids breach the surface and form either acidic lakes known as fumaroles common in the craters of volcanoes or dilute, neutral hot springs like those at Yellowstone or the Geysers in California. These two different surface manifestations – acidic lakes or neutral hot springs – reflect two different fluid types that each result from the two different paths taken by the magma as it rises to the surface. Both form gold deposits and are known respectively as low- and high-sulphidation gold deposits. In both subtypes gold will largely be precipitated from 2.5 kilometers depth to surface.
Recognizing that gold precipitates near the surface in these systems, the great American geologist Waldemar Lindgren coined the term epithermal in 1933, epi meaning shallow and thermal referring to the heated fluid. The chemist Werner Giggenbach further subdivided epithermal gold deposits into low and high sulphidation types (illustrated right1). Low and high do not refer to each type’s relative amount of sulphide minerals (metal complexes of sulfur with metals). Rather the distinction is based on the different sulfur to metal ratio within the sulphide minerals of each subtype. While this discussion deals with high-sulphidation epithermal systems, it is worth mentioning that low-sulphidation systems also form economic gold deposits although they develop under vastly different chemical conditions.

Recommended Money Makers